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1. Introduction

East Adriatic Coastal Experiment concentrates on the residual flow along the eastern Adriatic coast, called the East Adriatic Coastal Current (EACC). The observations and modeling are planned so as to enable the following hypotheses to be tested:

· The EACC is best developed during the winter. According to the old-standing paradigm, the Adriatic surface cyclonic flow is modulated seasonally, the inflow being most widespread in winter, the outflow in summer. In situ measurements carried out in a suitable area over the fall, winter and spring seasons are expected to document formation, culmination and decay of the inflowing current.

· The EACC core occurs up to Zadar, whereas further north the current is laterally more uniform in speed. Observations, which span the region in which the core disappears and the uniform flow begins, are supposed to be very useful.

· The EACC core is generated by the Middle and South Adriatic river inputs and surface buoyancy loss primarily related to the winter evaporation and cooling events, whereas the maximum disappears in the North Adriatic where the east coast river inputs are weak and the current is strongly influenced by inflow at the open boundary. This hypothesis will be empirically evaluated by comparing the EACC – as documented by direct measurements and CTD data  – with the simultaneous river inflows and air-sea fluxes. On the theoretical side, a numerical model realistically incorporating the buoyancy forcing will be needed. Moreover, as the east Adriatic coastal area is heavily influenced by the wind, with the bora-curl effects being pronounced there and the sirocco-driven currents being under the strong bottom-slope control, the model will also allow for the wind forcing and its possible influence on the EACC.

The project started on 1 October 2001 with the financial support of the USA Office of Naval Research (grant No. 493264 administrated by the University of Washington, Seattle, WA, USA) and the Croatian Ministry of Science and Technology. It was approved for three years, with preparation of the field work planned for the first year,  execution of the experiment for the second year, and analysis of the data and model results for the third year.

This is report on the first year of work on the project, which – following the project proposal – concentrated on preparations for the field work by taking into account (1) historical data and (2) theoretical findings based on analytical and numerical modeling. The existing analytical model, in which the friction is parameterized following the simple Guldberg-Mohn approach, was improved by allowing for the Boussinesq parameterization of friction. Moreover, Princeton Ocean Model and schematized air-sea and coastal forcing were used to reproduce the EACC in the North and Middle Adriatic and to finalize plans for the experiment.

2. Analysis of historical data  

2. 1. First analysis of available historical thermohaline data set for the EACE polygon

It is well known that water movement in the coastal Adriatic Sea is controlled by surface buoyancy forcing, wind and, in the area of river discharge, by coastal fresh water input. In an area where fresh water from rivers provides a strong buoyancy source it is of interest to separate regions with different vertical and horizontal hydrodynamic characteristics. More specifically, it is important to distinguish the region where coastal river inputs are significant, from wider shelf-area where the fresh water influence is dispersed. In the Adriatic, because of small tidal effects, the fresh water topping the denser sea water does not experience much mixing. 

The purpose of this first analysis of historical hydrographic data set for the northern part of the Middle Adriatic (EACE area) is to get a better insight into termohaline behavior and to possibly distinguish the parts of the investigated area where horizontal advection from the Middle Adriatic plays an important role from those parts which are influenced by advection from the North Adriatic. 

2.1.1. Data 

Data used in this study are extracted from MEDAS (Marine Environmental Database of the Adriatic Sea, Institute of Oceanography and Fisheries - IOF, Split, Croatia) data bank and are included in a new one named the EACE data set. The data were collected from the beginning of the last century, from 1904 up to 1982, in the EACE region (Fig. 1). In the mentioned period, temperature and salinity were measured mostly using the Nansen bottles and reversing thermometers at standard oceanographic depths, during various IOF cruises. All the data included in the EACE data set were quality controlled using the same procedure as developed for MEDAS data bank. The area covered by the new data set was divided in 6 subareas (boxes) and seasonal thermohaline characteristics were investigated separately for each box.  Only results for BOX 1 and for the whole EACE area are presented in this report.

2.1.2. Mean seasonal thermohaline variability 

Mean seasonal climatology of the EACE area is obtained using data from each box separately. In order to define seasonal variability, represented by data from different years, function of the form: 


[image: image287.png]
      

was least-squares fitted to the mean monthly temperature data for each vertical layer z. It was not possible to approximate salinity data by a function of two harmonics, and therefore mean seasonal salinity cycles were determined by interpolation using spline function. The procedure used here to obtain seasonal cycles is documented in the papers by Grbec (1997) and Grbec and Morovic (1998). For each box the same procedures were used: based on the available data in the water column, vertical layers were defined as surface, subsurface, intermediate and the bottom one. The number of data, given as a monthly (Fig. 2) and a year-to-year (Fig. 3) distribution, are shown for surface layer only, as there is mostly the same number of data at each standard oceanographic depth in the whole water column.
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Figure 1. Location of the historical data stations in the EACE area. Numbers indicate boxes for which seasonal thermohaline cycles were defined. Also shown are measurement points planned by other institutions.
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Figure 2. Monthly distribution of measurements in BOX 1 of the EACE polygon for the surface layer in the period 1904-1982.


[image: image4.wmf]Year

No of obs.

0

5

10

15

20

25

30

35

1904

1914

1924

1934

1944

1954

1964

1974

1984

temperature

salinity


Figure 3. As in Figure 2, but for year-to-year distribution of measurements.
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Figure 4. Mean seasonal cycle of temperature in BOX 1 for the surface layer (0-10 m). Long term (1904-1982) monthly averages (dashed line); vertical bars represent standard deviations. The seasonal cycle is fitted by means of equation given above (solid line). 
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Figure 5. Mean seasonal cycle of temperature in BOX 1 for the layers defined, for the period 1904-1982. The fitted curves are obtained by means of equation given above.
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Figure 6. Mean seasonal cycle of salinity in BOX 1 for the surface layer (0-10 m). Long term (1904-1982) monthly averages with their standard deviations (vertical bars). The superimposed curve is obtained by using the spline function. No data are available for December.
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Figure 7. Mean seasonal cycle of salinity in BOX 1 for the selected layers, for the period 1904-1982. Interpolated curves, obtained by spline functions, are superimposed on long-term monthly averages. No data are available for December. 
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Figure 8. As in Figure 7, but for the whole EACE polygon.
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b)
Figure 9. Mean seasonal cycles of a) water flux (E-P) along the eastern Adriatic coast (from Grbec, 1997), and b) river runoff. Evaporation was calculated, for the period 1961-1980, using bulk equation 
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where CE is the transfer coefficient which is set to be a constant (1.15*10-3), ( is the air density (1.25 kg m-3), v  is wind speed, qw is the specific humidity of air saturated at sea surface, qa is the specific air humidity, and ρo is the water density (1000 kg m-3).  

Generally, in the EACE polygon thermohaline properties (Figs. 4-7) have a similar structure as in the eastern Middle Adriatic coastal region where these properties are  under the influence of surface forcing and advection throughout the year. There are two salinity minima: one in July and a stronger one in September. In the Adriatic, the salinity minima generally occur in April-May and September-January period (Zore-Armanda, et al., 1999). 

In this short overview of the old hydrographic data set, comparison of mean seasonal cycle of salinity for the whole EACE polygon (Fig. 8) with evaporation, precipitation and river runoff along the eastern Adriatic coast (Fig. 9) is performed as well. It points to the fact that surface buoyancy forcing, especially during the cold part of year, has an important impact on thermohaline properties.

During the heating season salinity in the surface layer is minimal, whereas evaporation/precipitation difference is maximal and fresh water input along the east Adriatic coast is minimal. This strongly suggests that in this season advection of low-salinity water from the North Adriatic plays an important role, with the east Adriatic fresh water inputs possibly influencing the area with a time lag.

2. 2. Currents and thermal properties off Dugi otok

Wind, currents and temperature measurements were carried out on the offshore platform Panon (moored at 43o55' N, 14o34' E), between 21 November 1982 and 3 February 1983. Wind speed and direction were measured using SIAP VT-1450 anemometer, current speed and direction with ALEXEEV current meters deployed at the depth of 5, 30 and 70 m and, finally, temperature was measured on a daily basis by using bathythermograph. The data were taken from the data bank of the Hydrographic Institute (Split, Croatia).

The whole period was characterized by a relatively low synoptic activity over the area, consequently with generally low winds compared to the climatological averages. Thermal characteristics followed the climatological averages; namely, the deepening and destruction of the thermocline (pycnocline) took place together with constant cooling, as heat losses over the Adriatic are generally largest in November-December (Artegiani et al., 1997). Currents were generally stronger in the first half of the period, oriented principally in the N-S direction at 5 and 30 m, while the main axis at 70 m was directed NW-SE. The resultant current was oriented N-NW, following the general cyclonic circulation of the Adriatic Sea (Orlic et al., 1992), but having a rather low stability. Maximum velocity of 72, 51 and 69 cm/s was measured at 5, 30 and 70 m, respectively.

Figure 10 contains all of the measured data, together with wind measured at the permanent meteorological station at Mali Losinj. Currents are filtered by a 24h low pass filter (Z. Pasaric, unpublished), in order to eliminate tides and seiches that may have a noteworthy amplitude in the area. Unfortunately, temperature was measured only untill 22 December, so the cooling effects of bora episodes, which occurred later, cannot be fully documented.

A number of relatively weak sirocco, bora and other wind episodes occurred in the area during the observation period. A major sirocco episode happened between 28 November and 4 December, having a speed above 10 m/s at the Panon station. The result was a predominantly barotropic signal with currents directed northwards at 5 and 30 m, whereas currents were weaker at the bottom and were sheared towards northwest. A weak thermocline can be observed between 40 and 60 m at that time, remaining active up to mid December. Such stratification is usual for the area (Buljan and Zore-Armanda, 1976), but destruction of the thermocline (pycnocline) and cooling were rather slow, due to the lack of strong winds and cold outbreak episodes. A bora episode occurred between 23 and 26 December, with relatively low velocities of 10 m/s. Such a weak bora resulted in an up-wind current in the second half of the episode, which may be a result of the topographic influence of Dugi otok (Long Island). Namely, spatial inhomogeneity of the bora wind may cause a cyclonic gyre in this part of the Adriatic (Orlic et al., 1994). In contrast, the episode of 20/21 January initiated a down-wind current, but having rather low velocities and even vanishing in the bottom layer. To conclude, it seems that currents were predominantly barotropic, nevertheless, baroclinic contribution arose in the bottom layer due to the thermocline being positioned between the intermediate and bottom current meters.

[image: image8.png]
Figure 10. Time series of NE and NW winds at Mali Losinj and Panon, low-pass filtered currents (cutoff at 24 h) at 5, 30 and 70 m and temperature, measured at the Panon drilling platform.

3. Analytical modeling

3.1. Model

A transverse section positioned in central part of an elongated basin of constant width (2b) and depth (H) is considered. Axes of the coordinate system are placed along-shore (x) and cross-shore (y) and along the vertical (z), so that the domain of interest is defined by -b<y<b and -H<z<0 (Fig. 11). Response of the sea to the spatially uniform and temporally invariant fluxes of heat and water across the sea surface and coast is analyzed. Assuming that there is no along-shore variability, the steady-state equations governing the motion, pressure and density fields may be written:
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(1b)
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(1c)
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(1d)


[image: image13.wmf](

)

p

S

T

g

b

a

r

r

+

+

-

=

1

0






(1e)
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  (1f)
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  (1g)

where u, v and w are velocity components aligned with the x, y and z axis, respectively, p is pressure, ρ density, ρ0 reference density, T temperature, S salinity, f the Coriolis parameter (regarded as invariable), g acceleration due to gravity, Fi (i=x,y,z) are components of the frictional force, whereas Ki and Mi (i=y,z) are constant coefficients of eddy heat and salt exchange, respectively. The equation of state has been linearized. 


[image: image16.png]
Figure 11. Central transverse section of the elongated basin modeled. Dotted arrows indicate surface buoyancy loss and coastal buoyancy gain. 

All the dependent variables may be split into two parts, one representing the mean state that would occur in the absence of external forcing, the other standing for the perturbaations due to buoyancy driving: 
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(2)

From (1e) it then follows:
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(3a)
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(3b)

As 0 103 kg m-3, = 210-4°C-1, = 810-4psu-1, = 410–10 Pa-1 for typical values of temperature (10-20°C), salinity (5 psu) and pressure (106 Pa) in the seas, (3) implies 
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The mean state is thus modeled by:
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(4b)
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(4c)
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(4d)

and hence the hydrostatic equation (
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, where pa is the atmospheric pressure) and constant values for both 
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are obtained. 

The perturbations are captured by:
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(5b)
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(5c)
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(5d)
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(5e)
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(5f)

where it has been recognized that g = 9.81 m s-2, and H (100 m and consequently (g(0H << 1. A scaling analysis indicates that the last two terms on the left-hand side of (5d) predominate. Moreover, putting: 
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(6)

and assuming Ki = Mi = Ni (i=y,z), it folows that (5e) and (5f) may be compressed into an equation for density anomaly (. Thus:
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(7b)
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(7c)
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(7d)
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(7e)

Linearzation of the above equations results in:
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(8b)
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(8c)
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(8d)
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(8e)

Cross-differentation of the equations of motion (8b) and (8c) gives:
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(9)

Frictional forces are parametrized as:
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(10a)
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(10b)
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(10c)

The coefficient Ay varies between 102 and 105 m2 s-1 and Az between 10-4 and 10-2 m2 s-1. From the quotient:
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where the basin width (b (105m) is much lager than the basin depth (H (102m), it follows that in winter conditions with strong vertical mixing, the vertical component of frictional force dominates over the horizontal one.

By inserting the vertical components of frictional force:
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into equations (8a,b,c), we get the following system:
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(12e)

Appropriate boundary conditions for the system are:
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(13a,b)
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(13e,f)
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 (13g,h)

Boundary conditions (13a,b) follow from the assumption that there is no wind blowing over the sea surface, buoyancy forcing being the only one considered here. Boundary conditions (13c,d) relate current shear in the bottom layer to the bottom current via a coefficient of bottom friction, k. By the boundary conditions (13e,f,g,h) purely kinematic effect of the water flux through the boundaries is neglected, and thus the weak hydraulic flow – which would be the only one present in the fresh water system – is omitted from the present model.

By integrating equation (12d) on the interval [-H,0], with the boundary conditions (13g,h), we get:
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It follows that integral of the cross-shore velocity v along the vertical is constant, which, according to boundary conditions (13g,h), must be zero:
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By integrating equation (12a) along the vertical we obtain
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which, together with (13a) and (15), gives:
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(17)

From (13c) it follows:

u –H = 0.






(18)

Hence, as a consequence of boundary conditions it follows that bottom, along-shore velocity component vanishes.

Continuity equation (12d) enables stream function ( to be introduced:
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(19a,b)

From equations (12a) and (19a) it follows:
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By integrating this equation along the vertical from bottom (depth = -H) to some depth z, and taking into account boundary conditions ((z=-H)=0 and 
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Together with (9), (11) and (19) this gives the equation fir the stream function:
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(22)

Density anomaly will be modeld by a second degree polynomial (which makes sense at this level of approximation, Orlic, 1996):
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Introducing the notation: 
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equation (22) reads:
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   (25)

Boundary conditions that stream function has to fulfil are:
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(26d)
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(26e)
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(26f)

Conditions (26a,b,c,d) are kinematic ones, implying that there is no flow across the boundaries. Here, a small hydraulic effect, due to the water flux across boundaries, is neglected. Boundary conditions (26e,f) are consequences of conditions (13) and (19). The parameter p is given by:
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3.2. Solution

3.2.1. Solution for the stream function

Solution is split into two parts,
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satisfies equation (25), while 
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(29)

with the following boundary conditions:
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(30)
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The function 
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3.2.1.1. First part of the stream function

Here we suppose that non-zero boundary condition is the bottom one. Thus, we are searching for the function
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with the following boundary conditions:
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Separation of variables, (1(y,z) =Y(y)(Z(z), yields:
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It follows that Y(y) satisfies equation:
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and the boundary conditions: 
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General solution is
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where the boundary conditions imply: 
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Taking (1(y,z) in the form
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Thus,
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The function 
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and the boundary conditions:
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Let us suppose that
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where 
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, (i = 1,2,3,4) are arbitrary constants. Solving the characteristic equation we obtain:
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From boundary conditions it follows that unknown constants 
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The solutin reads:


[image: image119.wmf](

)

(

)

(

)

(

)

,

c

c

c

c

 

H

ω

-F

H

ω

E

F

D

c

 

H

ω

-F

H

ω

E

E

D

c

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

2

4

1

3

2

1

2

2

1

1

sh

sh

2

sh

sh

2

-

=

-

=

×

×

=

×

×

-

=







where Fn , En are constants given by:
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Turning back to Zn we have:
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and after substitution of cin:
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The first part of stream function, i.e.the function (1(y,z), finally reads:
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3.2.1.2. Second part of the stream function

Now, the nonzero boundary condition is the surface one. Equation to be solved is:
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together with boundary conditions:
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Separation of variables, (2(y,z)=Y(y)Z(z), yields:
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Excatly as in the previous section we get 
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The function (2(y,z) is supposed again to be given by a series 
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thus it follows that the surface value Zn(0) equals Dn as given by (31). Hence, the function Zn satisfies equation:
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and boundary conditions:
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The solution is given by:
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where numbers (i (i = 1,2,3,4) are the same as in the previous section, while di, (i = 1,2,3,4) satisfies the system of linear equations:
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Applying transformation 
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and after some algebra, the solution reads:
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Constants En and Fn are given by (32). Regarding the functions Zn we have: 
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while the function.(2(y,z) is given by:
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3.2.1.3. Third part of the stream function

The non-homogenous boundary condition is given along the right side of the basin, i.e. along the vertical y = +b. We are searching for a function (3(y,z) such that:
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and 
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After separation of variables, (3(y,z)=Y(y)Z(z), we get:
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In this case, the function Z is to be determined first; it satisfies
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By substituting the expression:
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        (36)
into the equation (35) we get 
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For latter reference we state the following two equalities (Viete's vormulas):
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As usual, from boundary conditions we get linear system for unknown constants gin, (i = 1,2,3,4):
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that can be transformed into: 
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where the constants 
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Existence of nontrivial solution of system (39) is equivalent with:
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By substituting 
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First two terms should be different from zero, since otherwise there is no nontrivial solution. Thus we have: 
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(40)

the equation that is to be solved for complex numbers (1n, (2n. However, as is readily seen, all the roots lay on the imaginary axis, and, consequently, from (38) we may write:


[image: image163.wmf].

 

 

 

1n

2

n

n

n

b

K

i

b

i

-

=

×

=

s

s







(41a,b)

Substituting these expressions into (40) we see that the imaginary part equals zero identically, while the real part reads: 
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Multiplying by H2 and transforming the variables we get somewhat more convenient expression: 
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Let us define the auxiliary function: 
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Then equation (42), i.e. condition for the existence of nontrivial solutions, may be written as: 
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(43)

Analysing this equation it is seen that there is an infinite sequence of roots that come in pairs 
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(44,a,b)

By solving the system (39) with this choice of (1n, (2n we get
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(45a,b)

The constants (n are obtained by substituting expressions (44a,b) into (37)
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To obtain the functions Zn(z) we substitute expressions (44) and (45) into (36). It follows that 
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Constants Cn are chosen in such a way that [image: image174.wmf](
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where 
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Now, we are ready to calculate the function Y(y). From non-homogenous boundary condition we have:
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wherefrom the boundary values Yn(b) should be deduced. But the functions Zn(z) do not form an orthogonal set (in the mean square, or L2-sense). However, it may be proved that 
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i.e. the function Zn(z) is orthogonal to the second derivative of Zm(z). Thus we have:
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The problem for Yn(y) now reads:
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it follows from the boundary conditions that 
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The third part of stream function finally reads:
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[image: image231.wmf]
3.2.1.4. Fourth part of the stream function

In this case, non-homogenous boundary condition is given on the left side of the basin The problem is:
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with the boundary conditions:
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As in the previous cases, separation of variables, (4(y,z)=Y(y)Z(z), yields:
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The z-component problem is the same as in the previous section. Hence:
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and
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Regarding the y-component, non-homogenous boundary condition implies:
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which, exactly as before, yields boundary value for Yn(y):
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Thus we have:
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Supposing:
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and using boundary conditions we get:
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while the fourth part of the stream function is:
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3.2.1.5. Stream function

The solution of stream function equation (25) together with boundary conditions (26) is given by the sum of already established partial solutions:
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(48)

By substituting expressions (28), (33), (34), (46) and (47) we finally get:
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where it holds:
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3.2.2. Along-shore circulation 

Along-shore circulation is determined by integration of expression (21) along the vertical, from the bottom (depth = -H) to some depth z:
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(51)

since the along-shore bottom current u-H equals zero by (18). The integral (51) is found numerically.

3.3. Discussion

The solution obtained is illustrated by using the previously obtained solution for density anomaly (Orlic, 1996). Stream function (49) is depicted in Figs. 12-14. The case of vanishing heat fluxes across boundaries is considered, and consequently the currents are related solely to the salinity gradient. It is assumed that the basin depth equals 100 m, basin half-width 105 m, evaporation/precipitation difference 10-8  m s-1, river runoff per unit area 10-5 m s-1, average salinity 35, coefficient of lateral diffusivity 10 m2 s-1, and Coriolis parameter 10-4 s-1. Moreover, three different values of the coefficient of the momentum exchange Az, as well as of the bottom friction coefficient k, are used while considering the solution. Model predicts upwelling which is concentrated at the coast and which is compensated by downwelling distributed over the greater part of the basin.

For weak internal momentum exchange (Fig. 14) quasigeostrophic equilibrium is obtained, with the cross-basin currents barely developed. An increase of internal friction destroys the equilibrium, and leads to strengthening of cross-shore haline circulation (Figs. 12). The influence of bottom friction is not perceptible when the internal friction is weak, but becomes obvious in the case of increased internal momentum exchange (as a surface-to-bottom assimetry of the haline circulation imposed by the strong bottom friction).

Solution for the along-basin currents (51) is shown in Figs. 15-17. The model predicts cyclonic circulation in the upper layers and its gradual decrease with an increase of depth. The result is weakly dependent on the exchange of momentum in the basin interior or close to the bottom. As could be expected, the currents are best developed when the frictional control is weak (Fig. 17), whereas they are reduced when the frictional processes are strong (Fig. 15). 

In all the cases considered there are surface current maxima close to the coasts. These, of course, correspond with the EACC core and its western counterpart observed in the Adriatic, thus providing an interpratation of the current cores: they are related to quasigeostrophic rectification of the surface offshore currents, which are strongest close to the coasts due to the fact that the buoyancy sources are concentrated at the coasts whereas the buoyancy sinks are distributed over the sea surface. In the case of no along-shore variability considered here, the current cores are uniform in the along-basin direction.
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4. Numerical modeling

4.1. Description of the numerical model and the performed experiments 

Four numerical experiments with schematized forcing were performed using Princeton Ocean Model (POM). POM is three-dimensional primitive equation nonlinear model with complete hydro- and thermodynamics (Blumberg and Mellor, 1987). Model equations are the traditional equations for conservation of mass, momentum, heat and salt coupled with the equation of state (Mellor, 1991). In the application to the Adriatic shelf three simplifying approximations were used: the hydrostatic, Boussinesq and ‘f-plane’ approximations. The model has a second order turbulence closure submodel ‘level 2 ½’ described by Mellor and Yamada (1982), which provides two prognostic equations for the turbulence kinetic energy and turbulence macroscale. The horizontal viscosity and diffusivity coefficients are obtained using Smagorinsky diffusion formulation adapted to the sigma coordinate system (Mellor and Blumberg, 1985).  

Numerical model was forced by horizontally homogeneous surface buoyancy loss and river inputs. Surface buoyancy loss was introduced in the equation of the salt conservation as its surface condition. The rivers were introduced in our model as a source term in the continuity equation (Kourafalou et al., 1996) and, moreover, were assumed to have zero salinity. The river discharges were thus modeled as a volume of zero salinity water in the form of a coastal ‘mound’. Rivers were placed in the top model layer at the grid points along the western and eastern coast. The value of the coastal salinity in the immediate vicinity of the source was then determined by model mixing. Initial conditions for all the experiments were horizontally and vertically homogeneous temperature and salinity fields with values of 130C and 37, respectively, and the state of rest. Horizontal resolution in the experiments was 5 km. In the vertical direction 16 unequally distributed sigma layers were used with better resolution in the surface and bottom layers. Courant-Friedrichs-Lewy criterion was satisfied with external time step of 20 s and internal time step of 600 s. Numerical experiments duration was 30 days. 

First two experiments were performed in a flat bottom basin whose contours approximate Adriatic shelf coastline. The Adriatic shelf area was covered with horizontal grid of 48 x 94 points, having 2657 sea points. In the first experiment rivers with discharges of 40 m3 s-1 were uniformly distributed along both the western and eastern coast. In the second experiment rivers with discharges of 64 m3 s-1 were distributed along the western coast, whereas discharges of 40 m3 s-1 were imposed along the southern half of the eastern coast. In both experiments evaporative loss of 1.505 x 10-7 m s-1 was assumed at each sea grid point of the numerical domain. Two more experiments with identical forcings were performed in the basin with realistic topography. 

4.2. Results 

Surface and bottom currents obtained in the flat bottom basin with the river discharges uniformly distributed along both western and eastern coasts are shown in Fig. 18. Overall circulation is cyclonic both in the surface and bottom layer. Current directions near the coasts in the surface and bottom layer indicate occurrence of the upwelling there. Current intensities are maximal near the coasts and are decreasing toward the centre of the basin. In the next experiment performed in a flat bottom basin general circulation is cyclonic as in the previous case (Fig. 19). Differences occurred along northern half of the eastern coast where no river discharges were assumed. Uniform alongshore current is formed there instead of upwelling obtained in the first experiment. Current intensities in both experiments were about few centimetres. 

[image: image211.png]
Figure 18. Surface and bottom currents obtained after 30 days in the flat bottom basin with river discharges uniformly distributed along both the left and right coasts and homogeneous surface buoyancy loss.

[image: image212.png]
Figure 19. Surface and bottom currents obtained after 30 days in the flat bottom basin with river discharges uniformly distributed along the left and the lower part of the right coast and homogeneous surface buoyancy loss.  

Salinities in the experiments with flat bottom basin are increasing from the coasts toward the middle of the domain due to prevailing river influence along the coast, and the dominance of evaporative process elsewhere.  

The next two experiments were performed in the basin with realistic topography with the same forcing as in the previous two cases. Basin-wide cyclonic circulation obtained in the first two experiments is strongly affected by introduced realistic topography (Figs. 20 and 21). In the third experiment in which river discharges are equally distributed along both the western and eastern coast, three cyclonic gyres occupy major part of the basin and are followed by an anticyclonic gyre in the southern part of the domain (Fig. 20). Strong asymmetry in the surface and bottom current fields can be observed along the western and eastern coasts and can be ascribed to different bottom configurations in the two areas. In front of the eastern coast depth abruptly increases seaward, whereas in front of the western coast the bottom slope is gentle. Coastal current in front of the eastern coast is narrow and [image: image213.png]
Figure 20. Surface and bottom currents obtained after 30 days in the realistic basin with river discharges uniformly distributed along both the left and right coasts and homogeneous surface buoyancy loss.

dominantly in the alongshore direction. From the northern part of the anticyclonic gyre up to the Kvarner Bay occurrence of upwelling can be observed. The strongest currents in that area are found 15 km offshore, and they decrease toward the coast and the open sea. In front of the western coast coastal current goes further offshore than the coastal current in front of the opposite side. A number of small anticyclonic vortices are formed there, especially in front of the southern straight part of the coast. Anticyclonic gyres are formed under the river influence, which in front of the mouth placed along the straight coast followed by gentle bottom slope forms anticyclonic gyre due to potential vorticity conservation (Kourafalou et al, 1996). Series of small anticyclonic vortices induce formation of the northward current right in [image: image214.png]
Figure 21. Surface and bottom currents obtained after 30 days in the realistic basin with river discharges uniformly distributed along the left and the lower part of the right coast and homogeneous surface buoyancy loss.  

front of the coast. Further offshore current is of southern direction and it is part of large cyclonic gyres, which occupy the whole width of the shelf area. Surface and bottom currents obtained in the experiment with rivers discharges distributed along whole western coast and the southern part of the eastern coast are depicted in Fig. 21. Comparison with the current fields from the previous experiment shows the strongest differences in front of the eastern coast and in the northernmost part of the basin. Two cyclonic gyres occupy the middle part of the domain and are followed by an anticyclonic gyre further south. Cyclonic gyre obtained in the previous experiment in the northernmost part of the domain is missing now. In front of the eastern coast north of the Zrmanja River up to the Kvarner Bay upwelling obtained in the previous experiment does not occur. The coastal current is dominantly directed alongshore with more uniform intensities than in the previous case. No coastal current north of the Kvarner Bay up to the western coast can be observed. Currents in the western coastal area obtained in this experiment are very similar to those from previous one and the obtained small differences can be ascribed to stronger river discharges in the later case.         

Current intensities in the experiments with realistic topography reach 10 cm s-1 and are stronger then those in the first two experiments. Realistic basin has smaller volume than the flat bottom one and the same forcing can induce stronger barotropic currents in it. Also, realistic topography increase the vertical mixing which also leads to stronger baroclinic currents. 

Salinity values increase from the shore toward the open sea due to the river influence along the coasts and the dominant effect of the evaporation elsewhere. Isohalines symmetry obtained in the first two experiments is perturbed by introducing realistic topography in the simulations. 

Current components and elevation time series obtained in all experiments indicate uniform increase of these variables, suggesting that after 30 days model did not reach the steady state. The reason could be that river discharges were introduced in both the continuity and salt conservation equations, whereas evaporative loss was introduced in the salt conservation equation only. Therefore, salt in the basin is conserved, but the volume is not and the steady state could not be reached. In the future experiments total buoyancy forcing should be introduced in the continuity equation.

5. Summary and conclusion

Analysis of historical data has shown that during the colder part of the year, which is of primary interest in this project, the sea is well mixed along the vertical in the EACE polygon, with average temperatures reaching minimum of 12°C in March, average salinities maintaining an almost constant level of 38.4. Scarcity of data prevented analysis of horizontal distribution of thermohaline properties. The EACE measurements would thus represent the first opportunity to document hydrographic conditions in the transitional zone between the Middle and North Adriatic east-coast areas.

Currents were previously measured in the EACE area only during winter 1982/83, at a single station. The data have shown that the residual currents are directed towards N-NW, albeit with a rather low stability, and that occasionally there were considerable wind-driven currents which may be related not only to the local but to the regional winds as well. Again, EACE measurements, when combined with the data coming from the complementary projects, would for the first time enable horizontal variability of the residual flow, and in particular the EACC core, to be documented in the area. The oceanographic data should be related to both the local and more distant meteorological measurements.

The analytical model developed has shown that the EACC core may be expected to occur at the EACE polygon. Moreover, it has been found that the vertical distribution of the flow heavily depends on the parameterization of friction: the previous model, in which Guldberg-Mohn parameterization was used, showed surface current to occur together with a countercurrent in the bottom layer, the present model, built on the Boussinesq parameterization, gave currents diminishing from the surface towards the bottom without changing direction. The EACE profiling of currents would provide a unique opportunity to disclose vertical current variability, and thus to learn more about the nature of frictional processes prevailing in the east Adriatic.

Numerical modeling has confirmed the soundness of the starting hypotheses, in particular the relationship between the EACC core, which occurs in the Middle but not in the North Adriatic, and buoyancy forcing: homogeneous at the sea surface, much stronger along the Middle Adriatic coast than along the North Adriatic coast. The modeling has also revealed that the basin topography strongly influences both the barotropic and baroclinic currents driven by buoyancy forcing. With the present parameterizations the model seemingly overestimates barotropic currents, with a consequent strong topographic steering along the western coast. Along the eastern coast simulations appear to be more realistic, suggesting that at the EACE polygon the EACC core may be expected to occur, whereas further north a broader current should prevail. Comparison of the EACE and complementary measurements again appears promising for analyzing the alongshore current variability.

The present report makes it obvious that the EACE measurement points, as given in the project proposal, are well chosen, and that the data collected at these points – along with the data coming from other projects simultaneously performed in the Adriatic – will enable a number of hypotheses to be tested. The EACE polygon is shown in Fig. 22, whereas the coordinates of all the stations are given in Tab. 1. Let it be added that the instruments (CTD probes, ADCPs, meteorological stations) are prepared for the start of the experimental work in November 2002, and that a web page (http://www.izor.hr/eace) has been set up in order to present EACE to a wider community of Adriatic researchers.
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Figure 22. Position of CTD, ADCP and meteorological stations at the EACE polygon.

	CTD, ADCP Station 
	Latitude 
	Longitude 

	
	Deg 
	Min 
	Deg 
	Min 

	1 
	44 
	6 
	14 
	53 

	2 
	44 
	4.2 
	14 
	50 

	3 
	44 
	2.4 
	14 
	47 

	4 
	44 
	0.6 
	14 
	44 

	5 
	43 
	58.8 
	14 
	41 

	6 
	43 
	57 
	14 
	38 

	7 
	43 
	55.2 
	14 
	35 

	8 
	44 
	1.2 
	14 
	28 

	9 (ADCP) 
	44 
	3 
	14 
	31 

	10 
	44 
	4.8 
	14 
	34 

	11 
	44 
	6.6 
	14 
	37 

	12 
	44 
	8.4 
	14 
	40 

	13 (ADCP) 
	44 
	10.2 
	14 
	43 

	14 
	44 
	12 
	14 
	46 

	15 
	44 
	18 
	14 
	39 

	16 
	44 
	16.2 
	14 
	36 

	17 
	44 
	14.4 
	14 
	33 

	18 
	44 
	12.6 
	14 
	30 

	19 
	44 
	10.8 
	14 
	27 

	20 
	44 
	9 
	14 
	24 

	21 
	44 
	7.2 
	14 
	21 


Table 1. Geographical coordinates of the CTD and ADCP stations.
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Figure 12. Stream function contours for the momentum exchange coefficient Az = 0.01 m2/s and bottom friction coefficient k = 0.01, 0.001, 0.0001 m/s.
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Figure 13. The same as in Figure 12, but for the momentum exchange coefficient Az = 0.001 m2/s.
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Slika 4. Prikaz strujne funkcije na presjeku bazena za koeficijent turbulentne izmjene impulsa Az = 0.0001 m2/s te k = 0.01, 0.001, 0.0001 m/s.



Figure 14. The same as in Figure 12, but for the momentum exchange coefficient Az = 0.0001 m2/s.
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Figure 15. Along-basin currents for the momentum exchange coefficient Az = 0.01 m2/s and bottom friction coefficient k = 0.01, 0.001, 0.0001 m/s. Plus sign denotes the pozitive current region and minus sign the negative one. The positive side of x-axis points out of the paper.
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Figure 16. The same as in Figure 15, but for the momentum exchange coefficient Az = 0.001 m2/s.
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Figure 17. The same as in Figure 15, but for the momentum exchange coefficient Az = 0.0001 m2/s.
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